Check even answers for 2.2

33.

Note: be sure to use arrows for all graphs!!
37.

39.

49-50 ■ Finding Piecewise Defined Functions A graph of a piecewise defined function is given. Find a formula for the function in the indicated form.

$$
f(x)= \begin{cases}\square & \text { if } x<-2 \\ & \text { if }-2 \leq x \leq 2 \\ & \text { if } x>2\end{cases}
$$

Check even answers for 2.2

51-52 ■ Vertical Line Test Use the Vertical Line Test to determine whether the curve is a graph of a function of x.

(b)

Function $\bigcap^{0} \underbrace{(c)}$
(d)

Check even answers for 2.2

53-56 . Vertical Line Test: Domain and Range Use the Vertical

 Line Test to determine whether the curve is a graph of a function of x. If it is, state the domain and range of the function.Function:

$$
\begin{aligned}
& \mathrm{D}=[-3,2] \\
& \mathrm{R}=[-2,2]
\end{aligned}
$$

53.

54.

Not a function

Not a
function
55.

56.

Function:
$\mathrm{D}=[-3,2]$
$\mathrm{R}=[-2] \cup(0,3]$

Check even answers for 2.2

2.5 Notes: Linear Functions

slope also represents the "rate of change"
$\uparrow^{\substack{\text { nim em } \\ \text { nim } \\ \text { slope }}}$
(rate of change) y-intercept

$$
(\text { or } y=a x+b)
$$

俞

$y=m x+b \quad(o r y=a x+b)$

$$
3
$$

$$
m=\frac{3}{100} \text { and } b=18 \text {, then } y=\frac{3}{100} x+18
$$

slope $=\frac{\text { rise }}{\text { run }}$ and slope also represents the rate of change

(a) Tank filled at $2 \mathrm{gal} / \mathrm{min}$ Slope of line is 2
or 2 gal per min

(b) Tank drained at $0.03 \mathrm{gal} / \mathrm{min}$
Slope of line is 0.03 Slope $=\frac{3}{100}$
or .03 gal per min

Figure 3 from section 2.5 in book

Examples for 2.5
2.6 Notes: Transformations of Functions

2.6 Notes: Transformations of Functions

odd function: symmetrical with respect to the or origin (rotate graph 180° about origin)
even function: symmetrical with respect to the y-axis (reflect across y -axis)

Example\#1: complete the graph to create an a. even function add b. odd function

see next slide for solution

2.6 Notes: Transformations of Functions

odd function: symmetrical with respect to the or origin (rotate graph 180° about origin)
even function: symmetrical with respect to the y-axis T (reflect across y -axis)

Example\#1: complete the graph to create an a. even function add b. odd function

2.6 Notes: Transformations of Functions

Example\#2: complete the graph to create an
a. even function

$$
\begin{aligned}
& y \text {-axis } \\
& \text { symmetry }
\end{aligned}
$$

b. odd function

origin
symmetry
(rotate 180°)
2.6 Notes: Transformations of Functions Examp 7 on today's graph paper 11
Example\#2: complete the graph to create an
a. even function

b. odd function

point of symmetry
$x \rightarrow-x$ (rotate)
$y \rightarrow-y$
change x and y to their
opposite values

